研究ノート ツメタガイの殻とらせん

佐藤武宏 (学芸員)

波打ち際の貝

ダンベイキサゴ (図1) はキサゴのな かまでは最も大きな種類で、まだ湘南 の海では普通に見ることができます。 水深約30メートルよりも浅い砂地の海 にすみ、海底の有機物を食べていま す。ツメタガイ(図2)は北海道以南の 日本沿岸、韓国や中国、東南アジアの 沿岸に広く分布する種類で、タマガイ 科に分類されます。タマガイ科の貝は 砂にもぐって移動し、他の貝をみつけ ると、殼に特徴的な円柱台形の穴を開 けて軟体部を食べてしまう肉食の貝で す。写真のヒナガイ(図3)もタマガイ 科の貝に襲われたのが致命傷になった のでしょう。ツメタガイは東京湾や相 模湾でも時折大発生して、アサリやハ マグリといった貝を食べあらすので、 漁師さん泣かせの嫌われものです。

タマガイ科の貝は、その名のとおり 多くの種が、球状、擬宝珠(ぎぼし) 状、しずく状の殻を持っています。タマガイ科の中でも、とりわけツメタガイは、殻の縦横高さがほとんど同じサイズをしていて、特に球に近いかたちをしています。そのせいかどうか、英語では、ムーン・スネイル(お月さん巻貝)とよばれています。

美しい巻貝というと、オキナエビス やタカラガイ、ホネガイやカセンガイ といった、色彩やとげや装飾の美しい 種が真っ先に挙げられます。その意味 ではツメタガイは平凡な貝かもしれま せん。しかし、ある違った見方をする と、ツメタガイこそ最も美しい巻貝の 一つである、とも思えてくるのです。

巻貝が先か らせんが先か

現在、私たちが「貝」とよんでいる 生きものは、軟体動物という大きなグ ループに属している生きもののうち、 イカやタコとウミウシを除いた生きも のをさすことが多いようです。つま り、「貝」とは殼を持つ軟体動物の総 称であるといってもいいでしょう。そ のうち特に、アサリやハマグリ、ホタ テガイといった二枚の殼を持つ貝を 「二枚貝」とよび、サザエやホラガイ といったらせん状の殻を持つ貝を「巻 貝」とよんでいます。ところが、本草 学の書物を調べると、江戸時代には 「貝」はタカラガイを意味し、一般的 なかたちの巻貝は「螺」と表記されて いたようです。

巻貝はなぜらせん形をしているので しょうか。らせんは漢字で「螺旋」と 書き表されます。「螺」は巻貝、 「旋」はぐるぐる回る、という意味で すから、らせんとは、巻貝のようにぐるぐる回っているかたち、ということができます。こうなると『ニワトリと卵』のように、巻貝が先か、らせんが先か、じっと見つめて考えれば考えるほど、目も頭もぐるぐる回ってきそうです。実は巻貝の成長の仕方に、巻貝がらせん形をしている謎を解く秘密があるのです。

二つのらせん

らせん形をしているもので、私たち の生活にとって最も身近なものの一つ に、蚊取線香やなると巻きがあげられ ます。このらせんの特徴は、幅が最初 から最後まで一定であることです。こ のらせんはあまりにも私たちにとって あたりまえのかたちをしているため、 何となく巻貝もこのようなかたちをし ていると思いがちです。ところが、ダ ンベイキサゴやツメタガイをよく見る と、実はそうではないことがわかりま す。巻き始めである中心部分では、ら せんの幅はせまく、きつく巻いている 印象を受けますが、巻きが進むにつ れ、どんどんと幅が増し、らせんが急 速に大きくなっていく様子が観察され ます (図1,2)。

幾何学の世界では、蚊取線香にみられるようならせん(図 4a)を一様らせんとよび、巻貝の殻にみられるようならせん(図 4b)を対数らせん、あるいは対角らせんとよんでいます。それぞれのらせんを研究した人の名前にちなんで、一様らせんをアルキメデスらせん、対数らせんをベルヌーイらせんとよぶこともあります。

図1. ダンベイキサゴ Umbonium (Suchium) giganteum. 殻幅 31.3 mm. 藤沢市鵠沼海岸. KPM-NG0020048



図 2. ツメタガイ *Glossaulax didyma*. 左:殼口側から見たところ, 殼高 51.7 mm;右:殼頂側から見たところ, 殼幅 53.8 mm. 藤沢市 鵠沼海岸. KPM-NG0020035.

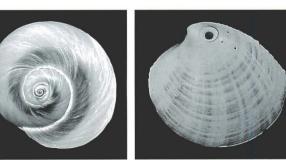


図 3. ヒナガイ Dosinorbis bilunulatus. 殼高41.8 mm. 藤沢 市鵠沼海岸. KPM-NG0020069.

この二種類のらせんをほどいて、まっすぐに伸ばすと、それぞれゴムホースのようなかたち(図 5a)とラッパのようなかたち(図 5b)になります。人間が機械や道具を使ってらせんを造ることを考えると、幅が刻々と大きくなっていくらせんよりは、幅が一定のらせんの方がつくりやすいでしょうから、身の回りの製品には一様らせん形のものが多いのかもしれません。かたちが変わらない成長

貝の成長を考えてみましょう。貝の からだは、固い殼の部分と、軟体部と よばれる軟らかい身の部分からなって います。固い殼は、外敵から身を守っ たり、自分のからだを支える役目を 持っています。一方、餌を摂ったり、 動きまわったり、子孫を残したりと いった生物体としての活動は、軟体部 によっておこなわれます。殻をつくる のも軟体部の働きによるものです。軟 体部は、それ自身が成長すると同時 に、殼の材料となるたんぱく質や炭酸 カルシウムを分泌し、殼の縁に新しい 殻を付け足していきます。今まであっ た殼を大きくするのではなく、今まで あった殼にさらに新しい殼を付け足 す、というのがポイントです。

あまり複雑なかたちの貝を想定すると、成長を想像するのが難しくなりますので、ここでは左側が閉じて、右側が開いている円柱状をしている想像上の貝(図6a-1)と、右側が開いている円すいをしている想像上の貝(図 6b-1)を考えることにします。

まず、円柱形の想像上の貝につい て考えましょう。円柱状の貝は円柱

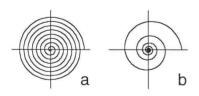


図 4. らせんの模式図. a: 一様らせん; b: 対数らせん.

図 5. らせんを展開した模式図. a:一様らせんの場合;b:対数 らせんの場合.

のまま、殻を付け足しながら成長します(図 6a-2,3)。そして最終的には細長いかたちの貝になります(図 6a-4)。殻だけではなく、軟体部の体積が成長にともなって増加しているならば、成長にともなってかたちは変化し、細長いからだになっていくはずです。

次に、円すい形の想像上の貝(図6b-1)について考えましょう。この貝も同様に、殻の縁に新しい殻を付け足しながら成長します(図6b-2,3)。成長するにつれ、円すいは大きくなり、殻の開いている部分の面積は次第に増します(図6b-4)。しかし、それぞれの円すいはお互いに相似です。また、軟体部のかたちも成長にともなって変化することなく、同じかたちを保ち続けることができます。

実際の成長は、このように単純で はありませんが、成長にともなっ て、大きさが変化してもかたちは変 化しない、という意味はわかっていた だけたと思います。このように成長を 続けてもかたちが変化しないような成 長様式を、アイソメトリックな成長と よんでいます。ヒトをはじめ脊椎動物 では、親子関係が想像できないほど、 親と子で姿が違う動物はそういませ ん。体の表面が軟らかい皮膚でおおわ れ、からだを支える硬い骨がからだの 内部に存在する動物では、アイソメト リックな成長をすることはそう難しい ことではないのかもしれませんが、か らだの表面が固い殻でおおわれている 動物にとっては、アイソメトリックな 成長をすることは大変なことです。い くらからだを大きくしようとしても、 外側に固い殼がある限り、それ以上大 きくなることは不可能ですし、無理に 殻を大きくしようとしてかたちが変 わってしまったのでは、生きていくの に不都合なことがおこりかねません。

エレガントな解法

エビやカニ、昆虫のような動物は、 脱皮をすることで、この問題を解決し ました。古い殻を脱ぎ捨てて、新しく 大きな殻をつくることによって、から だのかたちを一定に保ちながら、成長 を続けることができるのです。ところ が、巻貝や二枚貝の場合、体の構造 上、古い殻を脱ぎ捨てるのは不可能で

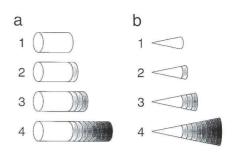


図 6. 想像上の貝の成長様式の模式図. a:一方が閉じた円柱状の殼の場合;b: 円すい形の殼の場合.

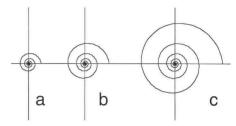


図 7. 対数らせんの式を使って描いた, 理想的な巻貝の殼の成長. それぞれはお 互いに相似形.

a:6巻目;b:7巻目;c;8巻目.

す。そのため、貝は成長にともなってかたちを一定に保つために、ある特定のかたちをとらざるを得なくなりました。そのかたちこそが、対数らせんだったのです(図 7)。巻貝だけではなく、一見らせんとは縁のないような二枚貝の殻も、横からながめると対数らせん形をしています。

ツメタガイも例外ではありません。 ツメタガイの殼も典型的な対数らせん 形をしています。さらに、ツメタガイ は数ある巻貝の中でも、最も球に近い かたちをしている巻貝の一つです。球 は、同じ体積の立体の中では表面積が 最少であり、立体の中で最も外からの 力に強い、といった性質を持っていま す。つまり、球形の殼には形成エネル ギーが小さく、外敵に対する防御能力 が高いというメリットがあるのです。 ツメタガイは、長い進化の歴史の中 で、「成長にともなってかたちが変わ らない」という条件と、「殼に費やす 投資を最少にし、身を守るという利益 を最大にする」という条件を満たす殼 のかたちを、幾何学を使ってエレガン トに解いたのかもしれません。装飾も なく、色も模様も平凡なツメタガイで すが、こういった意味では、ツメタガ イこそ最も美しい巻貝の一つ、という ことができるのです。